TLS/SSL
- 5 -

Nathan Friedly

Secure Socket Layer (SSL), and its newer revision, Transport Layer Security (TLS), are the de-facto standard used to end-to-end encrypt and verify any website traffic deemed worthy of encryption. This includes specifically credit card purchases and bank sites but it may also be used on any site requesting a password or dealing with personal information. SSL and TLS use public key encryption

The most recent draft of the SSL 3.0 specification was published in November of 1996 by Netscape. The intent was to be a “security protocol that provides communications privacy over the Internet. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery.” The goals included cryptographic security, interoperability, extensibility, and relative efficiency.
Interoperability was a goal so that applications could be written to the standard and expected to work with any other applications written to the standard. Interoperability, it was noted, does not imply that two programs will always be able to connect. One might not have the correct algorithm support or credentials necessary for the connection to the other.
Extensibility was described as providing “a framework into which new public key and bulk encryption methods can be incorporated as necessary.” It was noted that this should prevent the need to implement a new security protocol entirely should a weakness be found in one of the current encryption methods.
Cryptography, obviously, causes a higher CPU load than sending the data unencrypted. Still, they made some effort to minimize the network traffic and allow for session caching.
SSL 3.0 was the basis for the TLS 1.0 (RFC 2246) specification published by the Internet Engineering Task force (IETF) in 1999. The TLS 1.0 specification described itself as being similar to but not backwards compatible with the SSL 3.0 specification. It did include a fallback mechanism for SSL 3.0 if TLS was not available.

The IETF made some small changes and clarifications and published RFC4346 in 2006 detailing TLS 1.1. There is currently a working draft for TLS 1.2 (RFC Draft 4346) which expires in September 2007.
Protocols
SSL/TLS has 4 underlying protocols: Handshake, Record, Change Cipher Spec, and Alert.

All other SSL/TLS protocols reside inside of the Record protocol. This is laid out as:
[image: image1.png]shit Shit Sbit 16bit 1638Abyte
Type | Minor | Major | Record Length Record Dafa

All images credit: rad.com

The type allows for any of the other 3 protocols as well as application data. In decimal, the types are as follows:

20 ChangevCiphervSpec

21 Alert

22 Handshake

23 Application (data)

The version would be 3 then 0 for SSL 3.0. Because TLS is a “minor modification to the SSL 3.0 protocol,” TLS is defined as major version 3, minor version 1. TLS 1.1 is 3 then 2, and the upcoming TLS 1.2 will be major version 3 then minor version 3.

The record length is written in terms of bytes and can not exceed 2^14 (16,384). Compression allows for the length to be extended by up to 1024 bytes, to a new max of 17,408 bytes in the TLSCompressed.length field.
TLS connections begin with a 6-way handshake. The handshake protocol structure is:
[image: image2.png]8 bit

24 bit

Type

Length

Content

The allowed values for type are as follows:

0 HelloRequest

1 ClientHello

2 ServerHello

11 Certificate

12 ServerKeyExchange

13 CertificateRequest

14 ServerHelloDone

15 CertificateVerify

16 ClientKeyExchange

20 Finished

The data handshake process takes place in the maker shown in Figure 1:
 Client Server

 ClientHello -------->

 ServerHello

 Certificate*

 ServerKeyExchange*

 CertificateRequest*

 <-------- ServerHelloDone

 Certificate*

 ClientKeyExchange

 CertificateVerify*

 [ChangeCipherSpec]

 Finished -------->

 [ChangeCipherSpec]

 <-------- Finished

 Application Data <-------> Application Data

 Fig. 1. Message flow for a full handshake

 * Indicates optional or situation-dependent messages that are not

 always sent.
First the client sends the Client Hello message which includes a 32-bit Unix format timestamp and a 28-byte random number. The client may also specify a session identifier of a current or previous session. Doing this allows for multiple secure connections without going through the entire handshake process each time, although both Hello, the Change Cipher Spec, and both Finished messages must still be exchanged and be valid.
The client then includes a list of acceptable Cipher Suites and Compression Methods. Each cipher suite defines the algorithm for key exchange, the bulk encryption algorithm with secret key and length, and the message authentication code (MAC).
The server then responds to this with the Server Hello message. The server hello message will have the following data:

· The version number being used: the lower of the server’s highest supported version and the version in the client hello.

· A random number generated by the server.

· The session identifier: if the Session ID is recognized, then a short handshake is used and the following fields are filled in with the values from the previous connection. Otherwise, the Server Hello generates a new Session ID.

· The cipher suite chosen by the server, and

· The compression method chosen by the server.

If the server can not find an acceptable cipher suite and compression method, it will respond with a handshake failure alert.

Unless the key exchange method is anonymous, the server will send out a Certificate immediately after sending the Server Hello. The certificate is generally a X.509v3 certificate public key and unless otherwise specified uses the same key exchange method and signing algorithm previously decided on. After the server’s certificate, certificates from all the up line servers necessary to get to one that the client trusts must be included. The order of these should be such that each certificate validates the one before it.
If the server Certificate does not contain enough data for a premaster secret, then a Server Key Exchange is sent with either a RSA public, or a Diffie-Hellman public key. (This is the case for DHE_DSS, DHE_RSA, and DH_anon; but not for RSA, DH_DSS, and DH_RSA key exchange methods.)

If it is appropriate, the server may request a certificate from the client with a Certificate Request. This would immediately follow the Server Certificate, or if present the Server Key Exchange. The Certificate request would specify the types of certificates the server will accept and the Certificate Authorities the server trusts. The client, after receiving the Server Hello Done would respond with a message identical in format to the Server Certificate.

The Server Hello Done indicates to the client that server is done sending data and the client should now verify the certificates and whatnot it has received.

If a Certificate Request was received, the client would now send the Certificate.
If RSA is used, the Client Key Exchange message includes an encrypted pre-master secret which consists of a 48-bit number that is encrypted with the server’s public key.
If Diffie-Hellman is used, but not Fixed Diffie-Hellman, then the public key parameters are sent here.

If the client sent a certificate, then it would send a Certificate Verify message at this point, in most cases. This would include a signature in the same format as defined for the Server Key Message as well as an md5 sum of all of the previous messages and a SHA hash of all of the previous messages.

The Client sends the Change Cipher Spec message indicating that all future traffic will be computed with the Master Secret. The random numbers and the pre master secret are used by both systems in a pseudorandom function to calculate the master secret.
The change cipher spec protocol is a single byte that will always have a value of 1. It is encrypted and compressed under the current cipher (the pre master secret) and compression method.

The client now sends the Finished Message. This consists of the master secret, the finished label, an md5 of all previous messages and an SHA of all previous messages. All of this is encrypted with the master secret. If the server can read all of this, then the server knows that the key generation was successful.

The server responds with its own Change Cipher Spec and Finished messages which verify to the client that the key generation was successful.

If any warning or fatal errors occur, an alert is sent. Alerts consist of a byte that defines whether it’s a warning (1) or a fatal (2) alert, and a byte that indicates the specific alert.

The following alerts (with their values in parenthesis) are fatal:

· unexpected_message(10),

· bad_record_mac(20),

· decryption_failed(21),

· record_overflow(22),

· decompression_failure(30),

· handshake_failure(40),

· illegal_parameter(47),

· unknown_ca(48),

· access_denied(49),

· decode_error(50),

· export_restriction_RESERVED(60),

· protocol_version(70),

· insufficient_security(71),

· internal_error(80),

· user_canceled(90),

These messages may not be fatal:
· close_notify(0),

· no_certificate_RESERVED (41), - this is SSL 3.0 only

· bad_certificate(42),

· unsupported_certificate(43),

· certificate_revoked(44),

· certificate_expired(45),

· certificate_unknown(46),

· decrypt_error(51),
· no_renegotiation(100),
Now that the master secret is computed, data may be sent encapsulated inside of record protocol. This data will be encrypted and compressed in the agreed upon methods and can be reliably read by the other end but not likely anyone in-between.
References:
Dierks, T., and C. Allen. "RFC 2246 the TLS Protocl Version 1.0." IETF. Jan. 1999. 21 Apr. 2007 <http://tools.ietf.org/html/rfc2246>.

Dierks, T., and E. Rescorla. "RFC 4346 the Transport Layer Security (TLS) Protocol Version 1.1." IETF. Apr. 2006. 21 Apr. 2007 <http://tools.ietf.org/html/rfc4346>.

Dierks, Tim, and Eric Rescorla. "The TLS Protocol Version 1.2." IETF. Mar. 2007. 30 Apr. 2007 <http://www.ietf.org/internet-drafts/draft-ietf-tls-rfc4346-bis-03.txt>.

Freier, Alan O., Philip Karlton, and Paul C. Kocher. "The SSL Protocol Version 3.0." Netscape. 18 Nov. 1996. 29 Apr. 2007 <http://wp.netscape.com/eng/ssl3/draft302.txt>.

"Welcome to the SSL Tutorial." RAD Data Communications. 29 Apr. 2007 <http://www2.rad.com/networks/2001/ssl/index.htm>.

